407 research outputs found

    Probing the gravitational potential of a nearby lensing cluster Abell 2104

    Get PDF
    The cluster Abell 2104 is one of the lowest redshift clusters (z=0.153) known to have a gravitational lensing arc. We present detailed analysis of the cluster properties such as the gravitational potential using the X-ray data from ROSAT (HRI) and ASCA, as well as optical imaging and spectroscopic data from the CFHT. The cluster is highly luminous in the X-ray with a bolometric luminosity of Lx ~3x10^{45} ergs/s and a high gas temperature of ~10.4 keV. The X-ray emission extending out to at least a radius of 1.46 Mpc, displays significant substructure. The total mass deduced from the X-ray data under the assumption of hydrostatic equilibrium and isothermal gas, is found to be M_tot(r<1.46Mpc) ~(8.0 +/- 0.8)x10^{14} solar mass. The gas fraction within a radius of 1.46 Mpc is ~5-10%. The cluster galaxy velocity distribution has a dispersion of 1200 +/- 200 km/s with no obvious evidence for substructure. The total mass within 1.46 Mpc, deduced from Jean's equation using the observed galaxy number density distribution and velocity dispersion, is found to be \~6.8x10^{14} solar mass to ~2.6x10^{15} solar mass marginally consistent with the X-ray deduced total mass.Comment: 13 pages, 10 postscript figures, use aa.sty, to appear in Astronomy and Astrophysic

    New XMM-Newton observation of the Phoenix cluster: properties of the cool core

    Get PDF
    (Abridged) We present a spectral analysis of a deep (220 ks) XMM-Newton observation of the Phoenix cluster (SPT-CL J2344-4243), which we also combine with Chandra archival ACIS-I data. We extract CCD and RGS X-ray spectra from the core region to search for the signature of cold gas, and constrain the mass deposition rate in the cooling flow which is thought to be responsible of the massive star formation episode observed in the BCG. We find an average mass deposition rate of M˙=620(−190+200)stat(−50+150)systM⊙\dot M = 620 (-190 +200)_{stat} (-50 +150)_{syst} M_\odot/yr in the temperature range 0.3-3.0 keV from MOS data. A temperature-resolved analysis shows that a significant amount of gas is deposited only above 1.8 keV, while upper limits of the order of hundreds of M⊙M_\odot/yr can be put in the 0.3-1.8 keV temperature range. From pn data we obtain M˙=210(−80+85)stat(−35+60)systM⊙\dot M = 210 (-80 +85)_{stat} ( -35 +60)_{syst} M_\odot/yr, and the upper limits from the temperature-resolved analysis are typically a factor of 3 lower than MOS data. In the RGS spectrum, no line emission from ionization states below Fe XXIII is seen above 12A˚12 \AA, and the amount of gas cooling below ∼3\sim 3 keV has a best-fit value M˙=122−122+343\dot M = 122_{-122}^{+343} M⊙M_{\odot}/yr. In addition, our analysis of the FIR SED of the BCG based on Herschel data provides SFR=(530±50)M⊙SFR = (530 \pm 50) M_\odot/yr, significantly lower than previous estimates by a factor 1.5. Current data are able to firmly identify substantial amount of cooling gas only above 1.8 keV in the core of the Phoenix cluster. While MOS data analysis is consistent with values as high as M˙∼1000\dot M \sim 1000 within 1σ1 \sigma, pn data provide M˙<500M⊙\dot M < 500 M_\odot yr−1^{-1} at 3σ3\sigma c.l. at temperature below 1.8 keV. At present, this discrepancy cannot be explained on the basis of known calibration uncertainties or other sources of statistical noise.Comment: A&A in press, typos corrected, revised text according to published versio

    Star formation in the massive cluster merger Abell 2744

    Full text link
    We present a comprehensive study of star-forming (SF) galaxies in the HST Frontier Field recent cluster merger A2744 (z=0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFR{UV+IR}=343+/-10 Msun/yr. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFR{UV+IR}=201+/-9 Msun/yr. Focussing on obscured star formation, this core region exhibits a total SFR{IR}=138+/-8 Msun/yr, a mass-normalised SFR{IR} of Sigma{SFR}=11.2+/-0.7 Msun/yr per 10^14 Msun and a fraction of IR-detected SF galaxies f{SF}=0.080(+0.010,-0.037). Overall, the cluster population at z~0.3 exhibits significant intrinsic scatter in IR properties (total SFR{IR}, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFR{UV}/SFR{IR} up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.Comment: Accepted by MNRAS. 12 pages, 7 figures (high resolution versions of Figs. 1 & 2 are available in the published PDF

    Calibration of <i>Herschel</i> SPIRE FTS observations at different spectral resolutions

    Get PDF
    The SPIRE Fourier Transform Spectrometer on-board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing demonstrates that the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions using housekeeping data from the instrument subsystems, the calibration cannot be corrected analytically. Therefore, an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions

    Herschel reveals a molecular outflow in a z = 2.3 ULIRG

    Get PDF
    We report the results from a 19-h integration with the Spectral and Photometric Imaging REceiver (SPIRE) Fourier Transform Spectrometer aboard the Herschel Space Observatory which has revealed the presence of a molecular outflow from the Cosmic Eyelash (SMM J2135−0102) via the detection of blueshifted OH absorption. Detections of several fine-structure emission lines indicate low-excitation H ii regions contribute strongly to the [C ii] luminosity in this z = 2.3 ultra-luminous infrared galaxy (ULIRG). The OH feature suggests a maximum wind velocity of 700 km s− 1, which is lower than the expected escape velocity of the host dark matter halo, ≈ 1000 km s− 1. A large fraction of the available molecular gas could thus be converted into stars via a burst protracted by the resulting gas fountain, until an active galactic nucleus (AGN)-driven outflow can eject the remaining gas

    Comparison of source detection procedures for XMM-Newton images

    Full text link
    Procedures based on current methods to detect sources in X-ray images are applied to simulated XMM images. All significant instrumental effects are taken into account, and two kinds of sources are considered -- unresolved sources represented by the telescope PSF and extended ones represented by a b-profile model. Different sets of test cases with controlled and realistic input configurations are constructed in order to analyze the influence of confusion on the source analysis and also to choose the best methods and strategies to resolve the difficulties. In the general case of point-like and extended objects the mixed approach of multiresolution (wavelet) filtering and subsequent detection by SExtractor gives the best results. In ideal cases of isolated sources, flux errors are within 15-20%. The maximum likelihood technique outperforms the others for point-like sources when the PSF model used in the fit is the same as in the images. However, the number of spurious detections is quite large. The classification using the half-light radius and SExtractor stellarity index is succesful in more than 98% of the cases. This suggests that average luminosity clusters of galaxies (L_[2-10] ~ 3x10^{44} erg/s) can be detected at redshifts greater than 1.5 for moderate exposure times in the energy band below 5 keV, provided that there is no confusion or blending by nearby sources. We find also that with the best current available packages, confusion and completeness problems start to appear at fluxes around 6x10^{-16} erg/s/cm^2 in [0.5-2] keV band for XMM deep surveys.Comment: 20 pages, 16 figures. Accepted for publication in A&
    • …
    corecore